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Abstract

Traditional approaches to investigation of objectivity of ratings for constructed-

response items are based on classical test theory, which is item-dependent and sample-

dependent. Item response theory overcomes this drawback by decomposing item

difficulties into genuine difficulties and rater severities. In so doing, objectivity of

ability estimates is achieved, even though objectivity of ratings is poor. However,

most item response models are too rigid to fit complexity of rater severities. Also,

other types of items in the same test are excluded when estimating rater severities.

These problems are resolved in this study. Several advanced models are proposed to

explore severities changes over items and within items. In addition, multilevel and

multidimensional models are formed to incorporate both multiple-choice items and

constructed-response items in the test to increase estimating accuracy and model fit.

The proposed models are made possible by a newly developed item response model,

the multidimensional and multilevel random coefficients multinomial logit model. A

real data set from the biology subject of the 1995 Joint College Entrance Examination

in Taiwan was analyzed to demonstrate the advantages of this approach.

Key words: Rasch model, rater severity, objectivity of ratings, objectivity of ability

estimates, multilevel item response models, multidimensional item

response models.
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Multiple-choice (MC) items have dominated large-scale testing for many years.

The administrative convenience, economic advantages, and objective rating make MC

items automatic choice for many test. In fact, objectivity of ratings is not inherited.

For instance, when the Committee of the Joint College Entrance Examination in

Taiwan announced the so called correct answers for the MC items, some of them were

challenged and finally modified. Fortunately, through discussions and consensus,

objectivity of rating for the MC items is reasonably achieved.

On the other hand, the Committee never announces scoring rubrics for the

constructed-response (CR) items in the examination, not to mention the correct or

reference answers. Usually, each CR item is judged by two raters independently.

Some rating variations are usually found. For such an important examination,

examinees may be accepted or rejected by colleges simply due to a difference of one

point. Consequently, the impacts of rating variations on the examinees are very

substantial.

Traditionally, consistency of ratings is treated as an index of objectivity of

ratings. If the consistency is low, the objectivity is poor, and vice versa. The

Pearson correlation is widely used to assess interrater reliability. Percentages of

agreement are also used to account for consistency of ratings. In recent years,

generalizability theory has been applied to assess the generalizability of scores across

raters, items, or conditions (Abedi & Baker, 1995; Lavingueur, Tremblay, & Saucier,

1993; Longford, 1994; Marcoulides, 1994; McWilliam & Ware, 1994).

Although these methods seem reasonable, there are some drawbacks. First,

even if the two ratings are identical or the correlation is perfect, it does not necessarily

mean that the examinees are given what they deserve. These two raters might

consistently give a faulty score, either too high or too low. Therefore, the two ratings

are consistently incorrect. Objectivity of ratings is thus poor. Second, both the

correlation or generalizability theory are based on classical test theory. The scales in

classical test theory are assumed to be interval. However, raw scores or their linear

transformations are not interval per se (Wright & Stone, 1979).

Objectivity of ratings refers to as the degree of agreement between given scores

and deserved scores. So called deserved scores are the scores should be given in

3



theory. If the agreement is perfect, the objectivity is perfectly achieved. If the

given scores are lower than the deserved scores, the examinees are severely treated.

On the other hand, if the given scores are higher than the deserved scores, the

examinees are leniently treated. The problem here is how to acquire the deserved

scores. In practice, the scores given by rating experts can be treated as the deserved

scores, because they are believed to have thorough understandings of the construct

assessed and the examinees' responses. The given scores are derived from general

raters. If the given scores are close to the deserved scores, objectivity of ratings is

warranted.

In practice, some artificial responses or real ones sampled from the data set are

judged by experts in advance. General raters are then asked to judge these responses.

If their ratings are consistent with those of the experts, the raters are viewed as

successfully "anchored" on the experts and well qualified. Otherwise, they need

further training. This anchoring process can take place whenever needed, such as

once a day. Unfortunately, because the experts can only judge a small portion of the

responses, evaluation of objectivity of ratings is limited.

Even though objectivity of ratings is achieved through whatever quality control

system, another impotent issue arises afterwards: How can we objectively estimate

examinees' ability levels? As we know, the ratings of MC items are generally

considered objective, but the ability estimates based on classical test theory, usually

raw scores or their linear transformations, are item-dependent, thus, not objective.

Item response theory resolves this problem by incorporating an item characteristic

curve (ICC) between ability levels and probabilities of item responses. If data fit the

item response models, the ability estimates and the item difficulty estimates are

mutually independent. Consequently, the ability estimates are objective.

For items that are not objectively scored, such as CR items, how can objectivity

of ability estimates be achieved? The key point is to discompose item difficulty into

two subfacets: genuine difficulty and rater severity. For MC items, the item

difficulty is equivalent to the genuine difficulty because no raters are involved.

However, for CR items where raters are involved, the item difficulty contains not only

the genuine difficulty but also the difficulty caused by specific raters, which is referred

to as rater severity. By definition, if rater n's severity is positive, the items she
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judged become more difficult. If her severity is negative, the items become easier.

If her severity is zero, the items stay unchanged. Likewise, if data fit the models, the

ability estimates are independent of both the genuine difficulties and the rater

severities, thus are objectively estimated.

Research works using item response theory to investigate rater severity have

been accumulated, such as Engelhard (1992, 1994, 1996), Lunz & Stahl (1990a, b),

Lunz, Stahl, Wright, & Linacre (1989), Lunz, Wright, & Linacre (1990), Lunz, Wright,

Stahl, & Linacre (1989), Wang & Wilson (1996), Wilson & Wang (1995), to name a

few. There are two major shortcomings for most of these research works. One is

oversimplification on modeling of rater severity. Only one parameter was usually

assigned to each rater to represent the severity. Rater severity was not allowed to

interact with items. In practice, raters may show different severities across items or

even within items. The other is oversimplification on estimation procedures. Only

CR items were used to estimate the ability, the genuine difficulty, and the rater

severity parameters. Items in the same test, such as MC items, were put aside.

However, being in the same test, these MC items possess some information about the

parameters. Therefore, the information should be taken into account.

In this study, some advanced models for rater severity are proposed. Rater

severities are allowed to be different across items and within items. Besides,

multidimensional and multilevel models are proposed to incorporate information of

the MC items in the same test to improve model fit. The advanced modeling is made

possible through a newly developed item response model, the multidimensional and

multilevel random coefficients multinomial logit model (M2RCML), which I briefly

introduce in the latter section. Finally, a small real data set from the biology subject

of the 1995 Joint College Entrance Examination in Taiwan was analyzed to

demonstrate the advantages of the advanced modeling.

Some Advanced Models for rater Severity

In most of traditional item response models, only two facets are involved,

examinee's ability and item difficulty. In order to achieve "specific objectivity",

these two facets should not interact with each other (Rasch, 1960/1980; Wright &

Masters, 1982). The item difficulty facet can actually be partitioned into several

facets when needed. For example, in CR items where raters are involved, the item
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difficulty facet can be partitioned into genuine item difficulty and rater severity.

These two subfacets as well as the ability facet are in the same unit, the logit.

A three-way factorial design can be used to depict the relations among these facets.

Let the examinee's ability, the genuine difficulty, and the rater severity be treated as

three independent variables, and the item responses as a dependent variable. As

usual, the ability facet and the genuine difficulty facet should not interact with each

other, and the ability facet and the rater severity facet should not interact with each

other, either, because the two subfacets are partitioned from the item difficulty facet.

However, the genuine difficulty facet is allowed to interact with the rater severity

facet.

Most of the earlier research constrained these two subfacets to be independent,

hence, reduced flexibility of modeling of rater severity. In the following, this

constraint is released. The liberation has two advantages. The data analysts can

gain deep understanding about patterns of severity changes across and within items.

Quality control systems can accordingly be implemented to increase objectivity of

ratings. In addition, more accurate modeling can improve model fit, including

objectivity of ability estimates. Suppose raters did exhibit different severities across

or within items, using traditional approaches cannot fully capture the complexity.

The data would not fit the simpler model well, which in turn reduces the estimation

accuracy.

Dichotomous Items

Let 0 denote examinee n's ability, and 8, denote item i's difficulty. Let pnio

denote the probability of an incorrect answer (scored as 0) of examinee n to item i,

and p,i denote that of a correct answer (scored as 1) of examinee n to item i. In the

Rasch model,

log (Pnil I Pni0)=. On (1)

where log (nv-nil pnt0) is a log-odd with a unit of logit. In the above equation, only

two facets are involved, the ability facet and the item difficulty facet. In addition, On

does not depend on item (no subscript i), and gi does not depend on examinee (no

subscript n). That is, 0 and 8, are mutually independent.

6
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Suppose these items are judged by raters and they may express different severities,

the item difficulty can then be partitioned into the genuine difficulty and the rater

severity. Let there be I items, indexed i = 1, , I, and R raters, indexed r = 1, , R.

We can rearrange items by raters to form rater-items, indexed k = 1, , K. For

example, if there are 10 items and two raters, with each item judged by these two

raters independently. In such a case, 20 rater-items are formed. Each rater-item has

one difficulty parameter, resulting in 20 difficulty parameters altogether can be

estimated at most. Then, 8, in Equation (1) becomes 4, where denotes parameters

of the rater-items. We can use the Rasch model to estimate all the 20 rater-item

difficulty parameters, by simply rearranging the 10 items with each of two ratings into

20 rater-items physically. However, in so doing, the genuine difficulties and the

rater severities are confounded.

This problem can be easily resolved by constraining:

4 = + pr, (2)

where 8, is item i's genuine difficulty, and pr is rater r's severity. Note that in

Equation (2) 5, and pr are independent (no subscript r for items and no subscript i for

raters). With this modeling, Equation (1) becomes

log (pno I Pneo)= On (5i+ lor). (3)

The genuine difficulties and the rater severities are separated. If each item is judged

once by a distinct rater, the two subfacets are totally confounded and no rater severity

can be identified. For dichotomous items, subject to model identification, we cannot

estimate both the genuine difficulties, 5i, and the rater severities across items, air.

However, for polytomous items, rater severities across or within items can be

successfully estimated. I shall come to this issue in the following section.

Polytomous Items

For polytomous items, Equation (1) can be extended into

log (pny /pno) = On (4)

where pnu and pnipi denote the probabilities of scoring j and j-1, respectively, of

examinee n to item I; On denotes examinee n's ability; Si,. denotes step j's difficulty of
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item i. If an item is scored 0, 1, , J, a set of J step difficulties can be estimated.

This is the partial credit model (Masters, 1982).

If raters are involved in polytomous items, similar to dichotomous items, rater-

items can be formed and indexed k= 1, , K. Although we can estimate a set of J

step difficulties for each rater-item, the genuine difficulties and the rater severities are

confounded. As in dichotomous items, this problem can also be resolved by

constraining

kj = (5)

where Sy is item i's genuine difficulty, and pri is rater r's severity, at the j step. Note

that Su and pr., are independent, thus the genuine item difficulties and the rater

severities are separated.

In the partial credit model, it can be shown that through reparameterization gy can

be decomposed into an overall difficulty and several threshold difficulties:

= + Ty, (6)

where is the center of Si and referred to as the overall difficulty of item i; risi is the.

deviance of gy to and referred to as the threshold difficulty of step j of item i.

Similarly, the rater severities can be reparameterized into an overall severity and

several threshold severities:

Pri = Pr. + urj, (7)

where pr. is the overall severity of rater r, and rirj is the threshold severity of step j of

rater r. With this parameterization, Equation (4) becomes

log (p" I pny_i)= On- (8,.+ Ty+ pr.+ 770. (8)

In the rating scale model (Andrich, 1978), the threshold difficulties are constrained

to be identical across items:

81.1 rl, (9)

where DJ does not depend on items. Likewise, the threshold severities can be

constrained to be independent of raters:

Pri ±

8
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Therefore, a reduced model is formed:

log (pny/p,,y_i)= (gi.+ + pr.+ 771). (11)

In this model, raters are supposed to express different overall severities but identical

threshold severities. If the model fits the data well, it will be preferred to the more

complicated model, Equation (8).

The above model, Equation (11), can be further reduced by constraining all the

threshold severities to be zero and leads to

log (pnu 1 p,j_i)= ((St.+ ± pr.). (12)

It is the model that was widely used in the literature. Raters are expected to express

different overall severities but no threshold severities.

Figure 1 shows how the overall severities and the threshold severities affect the

ICCs. In Figure 1 a, both the overall and the threshold severities are zero, treated as

the reference. In Figure lb, the overall severity is positive but all the threshold

severities are zero. Comparing Figures la and lb, we find that the patterns of the

ICCs are identical except the location of Figure lb shifting to the right, which means

that the item becomes more difficult. Conversely, when the overall severity is

negative, the location of the ICC shifts to the left, as shown in Figure 1 c, meaning that

the item becomes easier. Adding an overall severity changes the overall difficulty,

whereas the threshold difficulties are not affected. Consequently, only the location

of the ICCs shifts and the pattern remains unchanged.

From Figures 1 d to 1 f, the overall severities are zero, but the threshold severities

do exist. In Figures 1 d and 1 e, the first threshold severities are positive and negative,

respectively, with both the second threshold severities being zero. On the contrary,

in Figures 1 f and 1 g, the second threshold severities are positive and negative,

respectively, with both the first threshold severities being zero. Treating Figure la as

reference, we find that the overall difficulties (center of the ICCs) of Figures 1 d to 1 g

remain unchanged. However, the patterns differ. In sum, the overall severities

change the locations, and the threshold severities change the patterns.

9
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I a. No rater severity lb. Overall severity > 0,
all threshold severities = 0.

lc. Overall severity > 0,
all threshold severities = 0.

1 d. Overall severity = 0,
the lst threshold severity > 0.

lf. Overall severity = 0,
the 2nd threshold severity > 0.

le. Overall severity = 0,
the lst threshold severity < 0.

lg. Overall severity = 0,
the 2nd threshold severity

Figure I. Influences of rater severity on item characteristic curves
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In all the above models, raters severities are constrained to be independent of

items. In some cases, they are allowed to interact. We simply add a subscript i to

the overall severities and the threshold severities, which changes Equation (8) to:

log (pny /Pnij -i) = Bn + zrj + pr r + riry). (13)

Unfortunately, this model is not identifiable because the number of parameters is

greater than the number of informations. We can constrain the threshold severities to

be independent of items, resulting in the following identifiable model:

log (pny /pnio) = On + rii + + rid). (14)

In this model, raters are expected to express different overall severities across items,

but the threshold severities are constant across items.

Equation (14) can be reduced to a simpler model by constraining the threshold

severities to be constant across raters, resulting in:

log (Nu /pno) = On (6. + 7b). (15)

In this model, although raters express different overall severities across items but their

threshold severities are constant across both raters and items.

We further simplify the above model by constraining all the threshold severities to

be zero, which leads to:

log (pny /pno) = On + zy + (16)

Now, raters are expected to express different overall severities across items, but

their threshold severities are all zero. The six identifiable models are summarized in

Table 1. Note that models 1, 2, and 3 are nested. Models 4, 5, and 6, models 1 and 4,

models 2 and 5, models 3 and 6, are nested, too.

11
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Table 1. Some item response models for rater severities

Model Equation Model Hierarchy

1

2

3

4

5

6

8: log (n 1 = (5.+ zy ± Pr. t riri)nij -

11: log (nv_nii = 9 (6.+ ry + Pro + 77.1)

12: log (n 1 Pnij-1) = On (5. +zlj ± Pr)
n14: log (Pny = On (8,.-F Pr.1 rk)\r- 1 y1nij Pn-1,

15: log (n nij / Pnij-1) On ± 71i)

16: log (pny/priii_i) = On Pr.i)

Submodel of model 4

Submodel of models 1 and 5

Submodel of models 2 and 6

Submodel of model 4

Submodel of model 5

Multidimensional and Multilevel Modeling

It is very common that a test contains several item formats, such as MC items and

CR items. When estimating rater severities, usually only CR items are used. The

MC items in the same test are put aside. In fact, the MC items provide some

information about examinees' ability, which in turn can be used to improve estimation

accuracy of rater severities and other parameters. When there are only a few CR

items, or when raters judge only a few CR items, estimation of rater severities based

on the CR items only would be very imprecise. In such a case, information of the

MC items can really help.

Applying traditional item response models to incorporate information of both item

formats, we have to treat both item formats as unidimensional. In so doing, we run

into another argument: Are these two item formats really unidimensional? There is

no easy answer. Usually, test developers adopt different item formats to tap different

dimensions. For instance, MC items usually aim at low level abilities, such as

knowledge and understanding, whereas CR items aim at high level abilities, such as

application and problem-solving. If so, treating both item formats as unidimensional

will contaminate the underlying dimensions. Even worse, the individual dimensions

disappear. Users of traditional item response models are forced to either discard the

MC items so that the underlying dimensions are not confounded but estimation

accuracy will be imprecise, or treat both item formats as unidimensional to improve

estimation accuracy but contaminate the dimensions.

There are two alternatives which can resolve this problem: multidimensional

modeling and multilevel modeling. If we have reasons to believe that different item

12
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formats tap different dimensions, we should not treat them as unidimensional but

multidimensional. Thus, multidimensional item response models are needed, where

individual dimensions are simultaneously estimated. This approach has three

advantages. First, the above dilemma of using unidimensional models disappears.

Second, the individual dimensions are reserved and each examinee has two ability

estimates, one for each dimension. Third, because one dimension can provide some

collateral information on the other, estimation accuracy can be improved, especially

when the two dimensions are highly correlated. All we need is a multidimensional

item response model.

Multilevel modeling results from recognition of multilevel structures of data. In

the literature, multilevel models have several names. For examples, in the social

sciences, they are referred to as hierarchical linear models (Bryk & Raudenbush, 1992;

Lindley & Smith, 1972) or multilevel linear models (Goldstein, 1977); in biometrics,

as mixed models or random effect models (Laird and Ware, 1982); in econometrics, as

random coefficients regression models (Rosenberg, 1973); in statistics, as covariance

component models (Dempster, Rubin, & Tsutakawa, 1981).

Most multilevel models are linear and based on classical test theory. It is

desirable to develop a multilevel model which is based on item response theory.

Such a model not only has the advantages of multilevel over unilevel but also the

advantages of item response theory over classical test theory. At the first level of the

multilevel item response model, a conditional item response model is formed. At the

second level, the ability parameters are regressed on some predictors, such as

examinees' background variables. The parameters at the two levels are jointly

estimated. The same idea can be applied to investigate rater severities. The raw

scores or ability estimates of MC items can be treated as the predictor at the second

level.

Both multidimensional modeling and multilevel modeling can incorporate

information of MC items into estimation of abilities and rater severities. In

multidimensional modeling, the original responses of MC items are used, whereas in

multilevel modeling, the raw scores or the ability estimates of MC items are used. In

the former, these two dimensions based on MC and CR items, respectively, are

13
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simultaneously estimated. In the latter, the abilities based the MC items are

estimated first, then put into the second level to help estimate the abilities and the rater

severities based on the CR items. Therefore, in theory, the estimation accuracy of

multidimensional modeling should be greater than that of multilevel modeling.

To utilize these two alternatives as well as the advances models for rater severities,

a multidimensional and multilevel item response model is needed. A newly

developed item response model can meet the demand. It is briefly introduced in the

following section.

The Multidimensional and Multilevel Random Coefficients

Multinomial Logit Model (M2RCML)

The M2RCML (Adams, Wilson, & Wang, in press; Adams, Wilson, & Wu, in

press; Wang, 1994) is a multidimensional and multilevel extension of the random

coefficients multinomial logit model (Adams and Wilson, 1996). The M2RCML has

two levels: a between student level and a within student level. At the between

student level, a population model fa (0; a) is formed, where 0 is a vector of latent

variables and a is a set of parameters that characterize the distribution of 0. The

population model describes the between student variation in the latent variables. At

the within student level, a conditional item response model fx (x; is formed,

where x is a vector of observation on items, 4 is a vector of parameters that describe

those items, and 0 is a vector of latent variables. The conditional item response

model describes the probability of observing a set of item responses conditioned on

the level of an individual on the set of latent variables.

The Population Model

Regarding the D-dimensional distribution of 0 = (91, . . . D)' , a multivariate

normal distribution is assumed to simplify estimation procedure. In addition to the

, we have a vector of u observed background characteristics. For examinee n, the

background characteristics are yn 1, ..., jinn, which are collected in to a vector Yn = (1,

Ynl, , Yna Treating the u observed background characteristics as predictors of the

0 latent variables, we have 0 = FY,, + En , where F is ad x u matrix of regression

14



iid
coefficients, E N(0, E) , and FY and E are independent, as assumed in the usual

regression models.

The Conditional Item Response Model

Suppose a set of D latent traits underlie the examinees' test performances and the

examinees' positions are denoted 0 = (0,,..., 90) . Let there be I items indexed i =

1, , I, and Ki response categories in item i indexed k = 1, , K,. A response in

category k of item i is scored bikd on dimension d (the scoring rubrics are known a

priori). The scores across D dimensions can be collected into a column vector bik =

Odd , bthDY, then into a scoring sub-matrix for item I, B, = (b,,,..., b,K) , and then

into a scoring matrix B = ) for the whole test.

Let = denote a vector of p free item parameters. Let a design

vector a'ik denote a linear combinations of corresponding to response category k of

item i. They are denoted by a design matrix

A = (a11, a12, kJ, a21, a2k2, , dzki). for the whole test. Let an indicator

variable Xnik denote as

1 if response of examinee n to item i is in category k,X=nik 0 otherwise.

Under the M2RCML model, the probability of a response in category k of item i for

examinee n is expressed as
exp(bk + ak

(Xnik -= 1, A, B, 4 On )
Eexp(13,. O
u=1

A marginal maximum likelihood estimation with EM algorithm (Bock &

Aitkin, 1981) for the model is developed and implications and applications are also

shown. Interested readers are referred to Adams, Wilson, & Wang (in press),

Adams, Wilson, & Wu (in press), Wang (1994), and Wang, Wilson, & Adams (1995,

in press) for details.

Real Data Analyses

A real data set from the biology subject of the 1995 Joint College Entrance

15
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Examination in Taiwan was analyzed to demonstrate various item response models for

rater severities. The test booklet is consisted of 20 MC items, 20 multiple MC items,

and 5 CR items, with four sub-items in each CR item. Each sub-item was scored 0,

1, or 2, resulting in a total score from 0 to 8 for each CR item. Each examinee was

judged by two raters independently. If a difference of more than two points was

found for each CR item, a third rating will be given.

For simplicity, only the 20 MC items and the 5 CR items, 414 examinees, and 15

raters were used. On the average, each rater judged about 50 examinees on each CR

item. Although the data set is small, it does not limit generalization and implication

of the modeling.

Basic Analyses

Since each CR item was judged by two raters, an average of these two scores is

given to the examinees. Figure 2 presents the means and the standard deviations of

the CR items for these 414 examinees. The mean of the third item is the highest,

6.53, and that of the forth item is the lowest, 2.34. Regarding the standard deviations,

the third item is the lowest, 1.65, and the others are between 2.08 and 3.05.

Therefore, it seems that the third item is the easiest, the forth item is the most difficult,

and the ratings of the third items is the least dispersed.

6.53

Mean

El Item 1
Item 2

O Item 3
O Item 4

Item 5
3.05 2 80

SD

Figure 2. The means and the standard deviations of the CR items

Percentages of agreement can be used to represent interrater consistency. Since

the maximum possible score of each CR item is 8, the differences of the two ratings

can be at most -8 or 8. Table 2 shows the differences and the percentages of the two
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ratings for each CR item. For percentages of perfect agreement, the third item and

the first item are the highest, 94.52% and 93.00%, respectively. The percentages of

more than a ±2 point difference are less than 1% for every item. Generally speaking,

the distributions of the differences of the two ratings for the CR items are symmetric.

No systematic biases are found in the two ratings, say, the first ratings are

systematically lower or higher than the second ratings. The correlations of the two

ratings for the items are between .93 and .98. All these results point out satisfactory

interrater consistency.

Table 2. The frequencies of the differences and the percentages of the two ratings

for the 5 CR items

Item

Difference

1 2 3 4 5

-4 2 (.48)* 1 (.24) 0 (.00) 0 (.00) 1 (.24)

-3 0 (.00) 0 (.00) 0 (.00) 0 (.00) 0 (.00)

-2 10 (2.42) 9 (2.17) 18 (4.35) 8 (1.93) 21 (5.07)

-1 3 (.72) 8 (1.93) 2 (.48) 26 (6.28) 33 (7.97)

0 385 (93.00) 371 (89.61) 390 (94.52) 332 (80.19) 308 (74.40)

1 2 (.48) 7 (1.69) 0 (.00) 39 (9.42) 24 (5.80)

2 12 (2.90) 18 (4.35) 5 (1.21) 6 (1.45) 24 (5.80)

3 0 (.00) 0 (.00) 0 (.00) 3 (.72) 1 (.24)

4 0 (.00) 0 (.00) 0 (.00) 0 (.00) 2 (.48)

Values in parentheses are percentages.

Figure 3 shows the mean ratings of the CR items given by the raters. On the

average, Rater 4 gave the highest scores, with a mean of 4.15; Rater 11 gave the

lowest scores, with a mean of 3.09. An instant thought might be that Rater 4 is the

most lenient and Rater 11 is the most severe. A score given by Rater 11 is 1.06

points less than that by Rater 4, on the average. For 5 items, a difference of 5.30

points could be found. This difference, of course, could affect the examinees

significantly in such a competing entrance examination.

Rater 4 and Rater 11 would have felt very uncomfortable about this conclusion.

Rater 11 might argue that the performances she judged are worse than those in general

and thus the ratings she gave were actually in consistent with the scores should be.

Therefore, it should not be problematic that her ratings are lower than others. There

is no easy way to approve or disapprove her argument, because examinees' abilities
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and rater severities are confounded.
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Figure 3. The mean ratings of the 15 raters on the 5 CR items

Item Response Modeling

In the following, I first apply traditional approach, unilevel and unidimensional

item response modeling, then move to multilevel item response modeling and

multidimensional item response modeling. The analyses were made possible by the

software MATS (Wu, Adams, & Wilson, 1995).

Unilevel and Unidimensional Modeling

Based on the 5 CR items and 15 raters, with the 20 MC items excluded, the

loglikelihood deviances of these six models are shown in Table 3. For Model 1,

each rater has one overall severity and seven threshold severities, resulting in 14

overall severity parameters (one treated as reference for model identification) and 105

(= 7 x 15) threshold severity parameters. However, some raters did not give some

particular scores and thus four parameters are not estimated, which leads to 115 rater

severity parameters altogether. The loglikelihood deviance of Model 1 is 11041.63.

Model 2 is a submodel of Model 1, by constraining all the threshold severity

parameters to be identical across raters, which leaves out additional 94 parameters.

Model 3 is a submodel of model 2, by constraining all the threshold severity

parameters to be zero, which leaves out additional 7 parameters. To compare these

three models, the usual loglikelihood ratio test can be applied. Similarly, Models 4,

5, and 6 are nested. As stated above, Model 1 is a submodel of Model 4; Model 2 is

a submodel of Model 5; Model 3 is also a submodel of Model 6. Figure 4 shows the

loglikelihood ratio tests of these six models. For Models 1 and 2, the difference of
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the loglikelihood deviance is AG2 = 89.65, with degrees of freedom of ARP = 94 and a

p-value of .61, which indicates that these two models are not statistically significant.

For parsimony, Model 2 is preferred. The other loglikelihood ratio tests can be done

in the same way.

Table 3. The loglikelihood deviances and numbers of parameters of Models 1 to 6

Model Equation Loglikelihood # Rater

Deviance: G2 Para.: RP

1 8:log(pny/pnyi)= 61,,,-(gi.+ Ty+pr. + 770 11041.63 115

2 11: log (pnii fpnii_i) = On (Si. + Ty + pr. + qi) 11131.28 21

3 12: log (pny 1 pny-i) = On (Si. + Ti + pr.) 11134.91 14

4 14: log (Pnij I Pnij-I) = On (Si. + Tij + Pr.i + lirj) 10998.19 157

5 15: log (Pny /pnii-1) = On (Si. + rii + Pr.i 4- 17,') 11078.41 63

6 16: log (p,iii/pny-1) = On (Si. + rii + pr.i) 11076.85 56

For models that are not nested, such as Models 1 and 5, Akaike's (Akaike, 1977)

information criterion, AIC, can be applied, which is defined as:

AIC = G2 +2TP,

where G2 is the loglikelihood deviance, and TP is the total number of parameters

estimated. In this particular data set, TP is equal to RP plus 41, because additional

39 item parameters and 2 person parameters (mean and variance) were estimated.

From both the loglikelihood ratio tests and the AlCs, we find that Model 3 is the

most parsimonious model. Therefore, only a single overall severity is needed for

each rater.
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Model 4

AG2= 80.22

ARP = 94

p = .41

Model 5

AG2 = 2.56

ARP = 7

p = .92

Model 6

AG2 - 43.44

ARP = 42 Model 1

p = .41

AG2= 52.87

ARP = 42

p= .12

AG2= 58.06

ARP = 42

p = .05

Note: The arrows indicate nested models.

AG2= 89.65

ARP = 94

p = .61

{ Model 2

AG2 = 3.63

ARP = 7

p = .82

I
{ Model 3

Figure 4. The loglikelihood ratio tests of Model 1 to Model 6

Multilevel Modeling

In the previous unilevel item response modeling, only the CR items were used and

the MC item were discarded. In fact, the MC items and the CR items are moderately

correlated as shown in Table 4. Therefore, information from the MC items could

help improve estimation accuracy of examinees' abilities, item difficulties, and rater

severities.

Table 4. The correlations of the raw scores between the MC items and the CR items
Total Scores of CR Item
the MC Items 1

CR Item
2

CR Item
3

CR Item
4

CR Item
5

CR Item 1
CR Item 2
CR Item 3
CR Item 4
CR Item 5
Total Scores of
the CR Items

0.77
0.77
0.25
0.59
0.62
0.83

0.76
0.23
0.55
0.61
0.88

0.21
0.55
0.59
0.87

0.20
0.23
0.43

0.53
0.75 0.79
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In multilevel modeling, either the total raw scores or the ability estimates were

treated as the second-level predictor. In so doing, an additional parameter, a

regression coefficient for the predictor, was estimated. As stated in the previous

section, Model 3 is preferred, therefore, only Model 3 was adopted in the first-level

modeling. At the second-level, in one hand, the raw scores of the MC items were

treated as the predictor, which is referred to as Model 7. On the other hand, the

ability estimates of the MC items derived from the Rasch model were treated as the

predictor, which is referred to as Model 8.

As shown in Table 5, these two models have the loglikelihood deviances of

10976.62 and 11056.45, respectively, and AICs of 11088.62 and 11168.45,

respectively. These two AICs are 156.29 and 76.46 less than that of Model 3.

Therefore, these two models are significantly better than Model 3. This

demonstrates that the multilevel modeling indeed helps increase model fit. Note also

that Model 7 has a better fit than Model 8. However, Model 7 is based on the raw

scores, which are not in interval scale. The scale of the second-level predictors in

multilevel modeling is assumed to be interval. Hence, Model 7 violates this

assumption. In contrast, the ability estimates derived from the Rasch model are

interval. The assumption is sustained in Model 8.

Multidimensional Modeling

In the previous multilevel modeling, the original item responses of the MC items,

being aggregated to form either the total raw scores or the ability estimates, were

invisible. Since the second-level predictor actually comes from items, it is

reasonable to treat them as such. This calls for a multidimensional item response

model, where the MC items are treated as one dimension and the CR items as another.

The parameters of these two kinds of items are jointly estimated. As the correlation

of the two dimensions gets larger, the benefit of the multidimensional modeling gets

better.

For the MC items, the Rasch model was applied, whereas for the CR items, Model

3 was applied. This resulting multidimensional model is referred to as Model 9

hereafter. Since the MC items were treated as a dimension, there is no second-level

predictor. Therefore, Model 9 is in fact a unilevel but multidimensional model. Of

course, if other suitable predictors are found, multilevel and multidimensional models

can be applied in a direct manner.
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In Model 9, altogether 77 parameters were estimated with a loglikelihood deviance

of 19915.36. This model cannot be directly compared to Models 3, 7, or 8, because

it is based on both the CR and MC items, while the other models are based on the CR

items only. For model comparison, a model for the MC items should be formed,

which is referred to as Model 10. It has a loglikelihood deviance of 9646.18, with 21

parameters. The deviances and AICs of Models 3 and 10 are summed. Similarly,

those of Models 7 and 10, and Models 8 and 10 are summed. Model 9 can then be

compared to the summed models. As shown in Table 5, Model 9 has the best model

fit among them. According to Model 9, the correlation between the two dimensions

is as high as .95, higher than that of raw scores between the MC and the CR items, .83.

All of these results demonstrate that in general the multidimensional modeling is

superior to both the unidimensional modeling and the multilevel modeling, especially

when dimensions are highly correlated.

Table 5. Model comparisons of various models
Model Description

3 Unilevel and unidimensional
model: CR only

7 Multilevel and unidimensional
model: Raw scores

8 Multilevel and unidimensional
model: Ability estimates

9 Unilevel and multidimensional
model

10 Unilevel and unidimensional
model: MC only

3 + 10
7 + 10
8 + 10

11 Unilevel and unidimensional
model: CR + MC

Log likelihood
Deviance

# Parameters AIC

11134.91 55 11244.91

10976.62 56 11088.62

11056.45 56 11168.45

19915.36 77 20069.36

9646.18 21 9688.18

20781.09 76 20968.54
20622.80 77 20776.8
20702.63 77 20856.63

20022.76 74 20170.76

By applying the traditional item response models, the MC items and the CR items

can be either calibrated separately or concurrently. What I mean concurrently here is

that both types of items are put together, treated as unidimensional, and calibrated as

such. This model, referred to as Model 11, has a loglikelihood deviance of 20022.76.

It does not fit the data as well as Model 9. In addition, treating both types of items as

unidimensional may run into a problematic argument: Are they really unidimensional?
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Also, the individual dimensions are preserved in the multidimensional modeling

whereas they are invisible and a only composite dimension is formed in the

unidimensional modeling.

The overall severities derived from these models are very similar, especially when

their standard errors are taken into account. Figure 5 displays the 95% confidence

intervals of the overall severity parameters of these 15 raters in Model 9. Among

them, those of Raters 6, 8, 10, and 13 contain zero. Note that Rater 15 does not have

a standard error because the parameter is constrained for model identification. For

those 14 raters, a chi-squared test was performed to check if the parameters are

different from zero. It turned out that 2,2 equals to 209.23, with 14 degrees of

freedom and a p-value less than .001. Consequently, not every raters expressed the

same severities in this particular data set.
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0.04

0.02

0

-0.02

-0.04

-0.06
I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

Rater No.

Figure 5. The 95% confidence intervals of the overall severities of the 15 raters

The overall severities of Raters 1, 5, 7, 9, 11, and 14 are positive, which means

that items becomes more difficult if judged by these raters. In contrast, the overall

severities of Raters 2, 3, 4, 12, and 15 are negative. Thus, items become easier when

judged by them. Although the overall severities are significantly different from zero,

they may not be practically important, because the severities are around the second

decimal, between -.043 and .034, with a range of .077. The overall item difficulties

and the standard errors for the 5 CR items are: .238 (.018), .029 (.020), -1.094

(.013), .604 (.024), and .224, respectively, with a range of 1.698. The range of the

overall severities is only 4.5% of the range of the overall item difficulties. Generally
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speaking, the raters had minute influences.

The finding is in concert with the basic analyses based on the raw scores, as shown

in Table 2 where the two ratings are almost identical. The consistency may be due to

the special structure of the CR items. As stated above, each CR item contains four

subitems, with each judged in a three-point scale (0, 1, 2). In so doing, the scoring

rubrics were well specified, thus, the rater consistency was foreseen.

As in Figure 3, we have shown that Rater 4 gave the highest scores and Rater 11

gave the lowest. The difference of these two mean ratings is 1.06 points. It seems

that Rater 4 is the most lenient and Rater 11 is the most severe. However, this may

not be the case because (a) they did not judge the same examinees, and (b) in such a

small data set, it is unwise to assume that the two samples of examinees come from

identical populations.

This problem can be resolved by estimating the rater severities. Figure 6 shows a

scatter plot of the mean ratings and the overall severities of the 15 raters. The

correlation is -.59, indicating that in general the higher the mean ratings are, the less

the severities. However, we should be very cautious since the correlation is only

moderate. This finding suggests that using the mean ratings to locate the severities is

imprecise and questionable.
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Figure 6. A scatter plot of the mean ratings and the overall severities of the 15

raters
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Conclusions

Objectivity of ratings has long been the major problem of constructed-response

items. Traditional approaches usually focus on consistency of ratings, such as

percentages of agreement of ratings, the correlation for interrater reliability, or

generalizability of scores across raters. However, consistency of ratings is not

equivalent to objectivity of ratings, because two ratings may be consistently biased.

In this study, objectivity of ratings is referred to as the degree of agreement between

given scores and deserved scores. If the agreement is perfect, objectivity of ratings

is perfectly achieved.

Even though objectivity of ratings is perfectly achieved, such as MC items, ability

estimates based on classical test theory are item-dependent and thus not objective.

Item response theory resolves this problem by incorporating ICCs between ability

levels and probabilities of item responses. If data fit the item response models, the

estimates of ability and item difficulty are mutually independent. Hence, objectivity

of ability estimates is achieved.

For CR items where objectivity of ratings are usually not perfectly achieved,

objectivity of ability estimates is still possible. Item difficulty can be decomposed

into genuine difficulty and rater severity. Likewise, if data fit the models, the ability

estimates are objective. However, most of earlier works using item response models

have two major drawbacks: oversimplification on modeling of rater severity and

oversimplification on estimation procedures.

In this study, these two problems are resolved. Several advanced models are

proposed to investigate rater severities within items and across items. In so doing,

complexity of rater severities is better monitored. In addition, multilevel and

multidimensional modeling are applied to incorporate all information in a test to

improve model fit as well as estimation accuracy of parameters. The various

advanced models, the multilevel modeling, and the multidimensional modeling are

made possible through the newly developed M2RCML.
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This study has four major implications. First, when a rating session just begins

and only a few ratings are made, applying the multilevel and the multidimensional

modeling can help increase estimates of rater severities. Once a large severity is

found, remedy action can be implemented in time to maintain objectivity of ratings.

Second, applying these advanced models can thoroughly detect variations of rater

severities within items and across items as well as time, places, or situations. A

better quality control system for ratings can then be set up. Third, use of these

advanced models as well as the multilevel and the multidimensional modeling can

better locate examinees' ability levels, even after the ratings are made. Finally, since

both objectivity of ratings and objectivity of ability estimates are well achieved, test

users will have more confidence to adopt CR items in their testing situations.
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